Радиационная обстановка советский атомный проект термоядерное оружие сверхмощный заряд санитарно-защитная зона Организация системы контроля Глобальные радиоактивные осадки Ядерный полигон Справочные материалы

Примеры вычисления интегралов, задачи на ряды

Метод интегрирования по частям.

Если и –функции, имеющие непрерывные производные, то , тогда ; проинтегрировав это равенство и учитывая свойство 2 неопределенного интеграла, получим формулу интегрирования по частям:

Иногда эту формулу приходится применять последовательно несколько раз.

Отметим три типа интегралов, которые вычисляются методом интегрирования по частям. Предел монотонной функции. Определение 11 (монотонная функция). Пусть f:E  R Если для любых x1, x2  E при x1<x2 выполняется f(x1)<f(x2) (f(x1)>f(x2)), то функция f(x) возрастающая (убывающая).

где –многочлен, В этих интегралах полагают .

где –многочлен. В этих интегралах за u принимают функцию, являющуюся множителем при .

где m, n–числа. Эти интегралы вычисляются двукратным интегрированием по частям.

Пример 1

Пример 2.

Пример 3. Формула Стокса. Ее векторная запись

Таким образом, получили: перенесем последнее слагаемое в левую часть:

Найти матрицу

Понятие комплексного числа

Комплексным числом z называется число вида , где , а x и y–вещественные числа. Число x называется действительной частью, y–мнимой частью комплексного числа z. Это записывают следующим образом: .

Первообразная функция. Неопределенный интеграл Основная задача дифференциального исчисления состоит в нахождении дифференциала данной функции или ее производной. Многочисленные вопросы науки и техники приводят к постановке обратной задачи: для данной функции найти такую функцию , производная которой равнялась бы .

Интегрирование рациональных дробей Рациональной дробью называется выражение вида , где , –многочлены степеней n и m соответственно.

Интегрирование тригонометрических функций

Настоящие методические указания предназначены для всех специ-альностей среднего профессионального образования (СПО), изучающих по дисциплине математика тему "Определённый интеграл" в том или ином объёме. Методические указания написаны в соответствии с требо-ваниями государственных образовательных стандартов в области мате-матики для специалистов СПО.
Примеры вычисления интегралов, задачи на ряды