Emporio Armani мужские    часы

Фотокамеры Nikon

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Вычисление производной примеры решения задач Матрица Вычисление предела Векторная алгебра и аналитическая геометрия Вычитание векторов Скалярное произведение векторов Кривые второго порядка Прямая в пространстве

Векторная алгебра и аналитическая геометрия примеры решения задач

Пример. Прямая  задана уравнением . Составить уравнения а) прямой , проходящей через точку  параллельно прямой ; б) прямой , проходящей через начало координат перпендикулярно прямой .

Решение. 1-й способ. Из уравнения прямой  определим нормальный вектор этой прямой . Этот вектор перпендикулярен и прямой  (рис. 26). Таким образом, для  известен нормальный вектор  и точка . Воспользуемся уравнением (2.12):  или  – уравнение . Для прямой  вектор  является направляющим  и точка . Воспользуемся уравнением (2.15): , или , или  уравнение .

 

Рис. 26

2-й способ. Запишем уравнение прямой  в виде . Найдем угловой коэффициент прямой : . Прямая , следовательно, ее угловой коэффициент ; прямая , поэтому ее угловой коэффициент . Зная угловой коэффициент прямой и координаты точки на этой прямой, можно воспользоваться уравнением (2.18). Получим уравнение прямой :  или, умножив обе части на 3, , и уравнение прямой : , то есть .

Упражнение. Остальные свойства докажите самостоятельно.

Теорема 1 (первый признак коллинеарности векторов). Для того, чтобы ненулевые векторы и были коллинеарны, необходимо и достаточно, чтобы существовало такое число l , что  = l

Доказательство. Достаточность вытекает непосредственно из определения произведения вектора на число. Если = l, то по определению || .

Необходимость. Пусть || .

1 случай: ­­ . Положим  l =½½ /½½ > 0. Тогда

 l ­­ Þ  l ­­ ,

 ½l½ =½l½½½ = l| | = | | =½½.

2 случай: ­¯ . Положим l = –½½ /½½ < 0. Тогда

l ­¯ Þ l ­­ ,

 ½l½ =½l½½½= –l| | = | | =½½.

 

Что и требовалось доказать.

 

 В процессе доказательства мы показали, как решить следующую задачу: найти вектор сонаправленный с данным вектором и имеющий заданную длину ½½= b. Это будет вектор = . В частности, единичный вектор ­­ находится так: = . Такой вектор называется ортом вектора .

 

Угол между векторами. Ориентация пары векторов на плоскости или тройки векторов в пространстве.

Определение. Пусть и – два ненулевых вектора. Отложим их из одной точки О: = , = . Тогда углом между векторами и называется угол между лучами OA и OB, т.е. a =ÐAOB. Пишем a =Ð( , ).

Если речь идет о векторах на плоскости, то можем ввести понятие ориентированного угла между векторами. Если кратчайший поворот

от луча OA к лучу OB осуществляется против часовой стрелки, то считаем, что a > 0, а если по часовой – то a < 0 . Таким образом, – p < a £ p . Если a > 0, то пара векторов (, ) называется правой, а если a < 0 – то левой.

В пространстве понятие ориентированного угла не имеет смысла. Если посмотреть на плоскость, в которой лежат лучи OA и  OB с одной стороны, то увидим, что кратчайший поворот от OA к OB осуществляется в одном направлении, а если посмотреть на плоскость с другой стороны, то мы увидим тот же поворот в другом направлении

Пусть в пространстве даны три некомпланарных вектора , , . Отложим их из одной точки О: = , = , = . Тройка векторов (, , )  называется правой , если кратчайший поворот от луча OA к лучу OB, если смотреть из точки C , выглядит как осуществляющийся против часовой стрелки. Соответственно, если этот поворот выглядит как осуществляющийся по часовой стрелке, то тройка векторов (, , ) называется левой. На рисунке изображена правая тройка векторов.


Скалярное произведение векторов