Вычисление производной примеры решения задач Матрица Вычисление предела Векторная алгебра и аналитическая геометрия Вычитание векторов Скалярное произведение векторов Кривые второго порядка Прямая в пространстве

Матрица примеры решения задач

Ранг матрицы

Рассмотрим прямоугольную матрицу mхn. Выделим в этой матрице какие-нибудь k строк и k столбцов, 1 £ k £ min (m, n) . Из элементов, стоящих на пересечении выделенных строк и столбцов, составим определитель k-го порядка. Все такие определители называются минорами матрицы. Например, для матрицы можно составить миноры второго порядка и миноры первого порядка 1, 0, -1, 2, 4, 3.

Определение. Рангом матрицы называется наивысший порядок отличного от нуля минора этой матрицы. Обозначают ранг матрицы r (A).

В приведенном примере ранг матрицы равен двум, так как, например, минор

Ранг матрицы удобно вычислять методом элементарных преобразований. К элементарным преобразованиям относят следующие:

1)     перестановки строк (столбцов);

2)     умножение строки (столбца) на число, отличное от нуля;

3)     прибавление к элементам строки (столбца) соответствующих элементов другой строки (столбца), предварительно умноженных на некоторое число.

Эти преобразования не меняют ранга матрицы, так как известно, что 1) при перестановке строк определитель меняет знак и, если он не был равен нулю, то уже и не станет; 2) при умножении строки определителя на число, не равное нулю, определитель умножается на это число; 3) третье элементарное преобразование вообще не изменяет определитель. Таким образом, производя над матрицей элементарные преобразования, можно получить матрицу, для которой легко вычислить ранг ее и, следовательно, исходной матрицы.

 Раздел I. Линейная алгебра

 Задача 1. Дана система линейных уравнений

 

Требуется показать, что система совместна, и найти ее решение тремя способами: а) по формулам Крамера; б) методом Гаусса; в) методом обратной матрицы. Выполнить проверку решения.

Решение.

Система n линейных уравнений с n неизвестными является совместной и имеет единственное решение, так как определитель системы, составленный из коэффициентов при неизвестных не равен нулю. Вычислим определитель системы методом разложения его по элементом строки. Разложим по первой строке:

Так как определитель системы не равен нулю, система уравнений совместна и имеет единственное решение.

 а) Найдем решение системы по формулам Крамера

  , ,

где D1 D2 D3 - определители, которые получаются из определителя D системы путем замены в нем соответственно 1-го, 2-го, 3-го столбцов коэффициентов при неизвестных x1 x2 x3 столбцом свободных членов уравнений, стоящих в правой части данной системы. Получим следующие три определителя:

Вычислить неизвестные .

Проверим это решение, подставив значения неизвестных во все уравнения системы. Получим  Решение верное.


Скалярное произведение векторов