Emporio Armani мужские    часы

Фотокамеры Nikon

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Вычисление производной примеры решения задач Применение производной к исследованию функций План исследования функции и построение графика Матрица Вычисление предела Векторная алгебра и аналитическая геометрия

Вычисление предела. Примеры решения задач

Пределы и непрерывность функции

Предел функции

Совокупность значений некоторых величин, как правило, лишенных физического содержания, представляет собой некоторые числовые множества. Будем обозначать множества большими буквами латинского алфавита: А,В,..,Х,У. Элементы этих множеств будем обозначать малыми буквами, а тот факт, что какой-то элемент принадлежит некоторому множеству, будем обозначать символом Î (принадлежит): х Î Х,у Î Y. Кроме того, мы будем использовать символы " (любой) и $ (существует).

  Если каждому элементу хÎХ поставлен в соответствие единственный элемент у=f(х) Î У, где Х и Y -данные числовые множества, то у называется функцией от х, определенной на множестве Х.

  Этот факт записывают так: у=f(х). Х называют множеством определения функции, а множество Y – множеством ее значений.

  Можно сказать, что функция f осуществляет отображение множества Х в Y.

  Eсли любой элемент у Î Y является значением функции f, тo говорят, что функция f отображает множество Х на множество  

 Пример 1. Функция f(х) = sin х отображает интервал Х = (0,2p) на отрезок [-1,1].

  Действительно, изобразим у = sin х в интервале (0,2p). Очевидно, что каждое число из отрезка [-1,1] оси ОY является значением функции у = sin х.

Пусть между элементами множеств X и Y функция y=f(x) устанавливает взаимно однозначное соответствие, то есть "xÎX соответствует один и только один его образ y =f(x) Î Y и обратно, для " y Î Y найдется единственный прообраз x Î X такой, что f(x) = y. Тогда функция x =f--1(y), где y Î Y, устанавливающая соответствие между элементами множеств Y и X, называется обратной для функции y = f(x).

 Иначе: обратная функция f -1 является отображением множества Y на множество X.

Таблица производных.

Пусть - дифференцируемые функции от переменной х.

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

Примеры:

1. Найти производные следующих функций:

.

Решение:

 

 

2. Вычислить значение производной функции

 в точке с абсциссой х0 = 1.

  .


Вычислить произведение матриц