Emporio Armani мужские    часы

Фотокамеры Nikon

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Неопределенный интеграл


Учебник по математике примеры решения лекции

Метод замены переменной (интегрирование подстановкой)

Иногда по структуре подынтегрального выражения удается догадаться не о самой подстановке , а о виде функции  – обратной для  – с тем, чтобы свести исходный интеграл к одному из табличных интегралов.

ПРИМЕР 3. Вычислить .

РЕШЕНИЕ. Полагаем , тогда  и .

Свойства элементарных преобразований. Одно элементарное преобразование первого типа эквивалентно четырем элементарным преобразованиям второго и третьего типов.
Поэтому имеем

.

3. Рассмотрим интегралы от функций, содержащих квадратный трехчлен в знаменателе,  и , в случае, когда  (трехчлен не разлагается на действительные множители).

Выделим полный квадрат в трехчлене:

.

Положим , тогда , , .
Отсюда 

.

Здесь использованы табличные интегралы 2 и 12 и проведен переход к первоначальной переменной интегрирования .

Аналогично

.

Здесь использованы табличные интегралы 1 и 15 и совершен переход к переменной интегрирования .

Интеграл вида  в случае  и для тех , при которых , вычисляется аналогично: . Полагая ,  и используя формулы 1 и 14, имеем

.

Полученные общие формулы не следует запоминать, целесообразно каждый раз проводить соответствующие выкладки подробно.

ПРИМЕР 4. Вычислить .

РЕШЕНИЕ. Приводим интеграл  к виду интеграла : . Выделим полный квадрат в трехчлене знаменателя . Полагая , получим  и

.

При интегрировании интеграла вида  – произвольные
числа, целесообразна так называемая "обратная подстановка" ; она приводит интеграл  к интегралу "более простого
вида" – без множителя перед корнем в знаменателе. Покажем это на конкретном примере.

ПРИМЕР 5. Вычислить .

РЕШЕНИЕ. При , ,  имеем

.

Получим интеграл вида ; для его вычисления преобразуем
трехчлен

.

Окончательно

.

Далее указаны примеры других подстановок, упрощающих исходные интегралы.

Введем понятие предела функции. Число A называется пределом функции y = f(x) в точке x0 (иногда говорят, при x, стремящемся к x0), если для любого положительного числа e можно найти такое положительное число d, что для всех x из d-окрестности точки x0 соответствующие значения y попадают в e-окрестность точки y = A.
Множества математическая логика