Предел и непрерывность функции


Учебник по математике примеры решения лекции

Неопределенный интеграл

ПРИМЕР 5. Вычислить .

РЕШЕНИЕ. Снова выбор табличного интеграла, к которому попытаемся свести интеграл , проведем по структуре подынтегрального выражения. Оно представляет собой дробь, знаменатель которой содержит квадратный корень разности положительного числа  и квадрата функции – . Поэтому в таблице интегралов подходящей является формула 14. Учитывая равенство ,
получаем .

ПРИМЕР 6. Вычислить .

РЕШЕНИЕ. Подводим под дифференциал  и используем формулу 15 таблицы интегралов:

.

Заметим, что интегралы  и  (без множителя  перед квадратным корнем в знаменателе) нельзя вычислить по формулам 14 и 15, поскольку .

ПРИМЕР 7. Вычислить .

РЕШЕНИЕ. Подынтегральная функция по структуре – дробь;
в числителе – показательная функция , производная ее – та же показательная функция с точностью до постоянного множителя; знаменатель есть сумма квадрата функции , так как , и положительного числа 3, которое можно представить в виде . Эти соображения показывают, что следует применить формулу 12. Так как , то будем иметь

.

Заметим, что формула 2 к рассматриваемому интегралу не
применима, так как дифференциал знаменателя  сконструировать в числителе нельзя.

Непосредственным интегрированием с помощью табличных интегралов можно найти не всякий интеграл, например .
Для вычисления этого интеграла нужны другие соображения.

Так как между множеством действительных чисел и множеством точек числовой оси можно установить взаимно-однозначное соответствие, в дальнейшем изложении понятиям “число х” и “точка х числовой оси” в некоторых случаях будет придаваться один и тот же смысл. Например, вместо “значение функции при значении аргумента, равном х1” будет говориться “значение функции в точке х1”. В нижеследующем опре­делении можно везде заменить выражение “точка х” на выражение “число х”.
Вычислить производную функции