Предел и непрерывность функции

 Emporio Armani мужские    часы

Фотокамеры Nikon

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Дифференцируемость функции
комплексной переменной
Правила интегрирования
Множества математическая логика
Предел и непрерывность функции
Вычислить производную функции
Неопределенный интеграл
Расчет электрических цепей
постоянного и переменного тока
Цепи постоянного тока
Теория переменных токов
Электрические машины
законы Кирхгофа
Резонанс напряжений
резонанс токов
Трехфазная цепь
Соединение в треугольник
Определение гармоник
преобразования Фурье
Расчет переходного процесса
в цепи RL
Моделирование электрических
цепей
Моделирование цепей переменного
тока
Резонансные цепи
Моделирование переходных
процессов
Моделирование схем с
электрическими машинами
Экологические проблемы
эксплуатации АЭС
Cвойства атомных ядер
Волновая и квантовая оптика
Полигон Новая Земля
Семипалатинский полигон
Радиационная обстановка
Институт стратегической
стабильности
Советский атомный проект
Термоядерная бомба
Сверхмощные американские
испытания
Первый в истории взрыв
Появлению сверхмощных зарядов
Эпоха холодной войны
Радиационная обстановка
Испытания в атмосфере
Следы наземного взрыва
санитарно-защитная зона
Контроль за облучением населения
Организация системы контроля
Глобальные радиоактивные осадки
гамма-излучение
самолет-лаборатория
радиационной разведки
Радиевый институт им. В.Г. Хлопина
справочные материалы
ядерный щит
государственная экспертиза
Вспоминают ветераны
Моратории на ядерные испытания
Ядерно-взрывные технологии
излучения в малых дозах
Основные факторы риска
Институт клеточной биологии
Факторы нерадиационной природы
химические факторы
допороговые дозы
гамма-спектрометрический анализ
взрывозащитная камера
хранилища радиоактивных отходов
Проектные работы
академик РАН А.Д. Сахаров
подводные ядерные взрывы
Регистрация параметров
ядерного взрыва
световое излучение
Авиационная регистрация
Аппаратура для регистрации
Атомное и термоядерное оружия
Развитие ядерной индустрии
Ядерная программа Россия
Мирная атомня энергетика
Атомная бомбардировка
Ядерная программа США
Индийская ядерная программа
Испытания ядерного оружия

Предел и непрерывность функции одной переменной Понятие предела функции  при , стремящемся к  (сокр. ), является основным понятием математического анализа. Оно характеризует поведение функции  вблизи точки , т.е. существование предела и его значение определяют локальное свойство . В определении предела значение функции в точке  не участвует, поэтому функция  в точке  может быть не определена (не задана). Для удобства изучения и геометрического представления последовательности обычно переобозначают   и последовательность  изображают точками на числовой оси.

Числовая последовательность – множество значений функции, определенной на множестве всех натуральных чисел, записанное в порядке возрастания , т.е. .

Показать по определению . . Показать .

Показать, что  не существует.

Теорема о локальной ограниченности функции, имеющей при   конечный предел

Теорема о переходе к пределу в равенстве Контрпример. Пусть , , тогда . Но сумма функций может быть представлена слагаемыми (неоднозначно), например в виде  и , и пределы слагаемых при  не являются конечными числами (не существуют).

Первый замечательный предел . Сравниваем две б\м при  функции и устанавливаем их эквивалентность .

Односторонние пределы

Второй замечательный предел .

Непрерывность функции в точке

Непрерывная в точке функция локально ограничена. Арифметические операции: сложение, разность и произведение конечного множества непрерывных в одной и той же точке функций – определяют функцию, непрерывную в той же точке. Деление непрерывных функций определяет непрерывную функцию в любой точке, кроме нулей знаменателя.

Непрерывность функции на множестве Функция , , называется непрерывной на множестве , или говорят, что функция  принадлежит множеству всех функций, непрерывных на множестве  (сокр. ), если она непрерывна в каждой точке множества .

Теорема Вейерштрасса

Ядерные испытания в Арктике Взрыв сверхмощной советской термоядерной бомбы Основные факторы риска Облучение людей Регистрация параметров ядерного взрыва