Предел и непрерывность функции

Предел и непрерывность функции одной переменной Понятие предела функции  при , стремящемся к  (сокр. ), является основным понятием математического анализа. Оно характеризует поведение функции  вблизи точки , т.е. существование предела и его значение определяют локальное свойство . В определении предела значение функции в точке  не участвует, поэтому функция  в точке  может быть не определена (не задана). Для удобства изучения и геометрического представления последовательности обычно переобозначают   и последовательность  изображают точками на числовой оси.

Числовая последовательность – множество значений функции, определенной на множестве всех натуральных чисел, записанное в порядке возрастания , т.е. .

Показать по определению . . Показать .

Показать, что  не существует.

Теорема о локальной ограниченности функции, имеющей при   конечный предел

Теорема о переходе к пределу в равенстве Контрпример. Пусть , , тогда . Но сумма функций может быть представлена слагаемыми (неоднозначно), например в виде  и , и пределы слагаемых при  не являются конечными числами (не существуют).

Первый замечательный предел . Сравниваем две б\м при  функции и устанавливаем их эквивалентность .

Односторонние пределы

Второй замечательный предел .

Непрерывность функции в точке

Непрерывная в точке функция локально ограничена. Арифметические операции: сложение, разность и произведение конечного множества непрерывных в одной и той же точке функций – определяют функцию, непрерывную в той же точке. Деление непрерывных функций определяет непрерывную функцию в любой точке, кроме нулей знаменателя.

Непрерывность функции на множестве Функция , , называется непрерывной на множестве , или говорят, что функция  принадлежит множеству всех функций, непрерывных на множестве  (сокр. ), если она непрерывна в каждой точке множества .

Теорема Вейерштрасса

Ядерные испытания в Арктике Взрыв сверхмощной советской термоядерной бомбы Основные факторы риска Облучение людей Регистрация параметров ядерного взрыва