http://premat.ru/brest/

Экологические проблемы эксплуатации АЭС


Станции тепло и энергоснабжения

Методы расчета: составление системы балансных уравнений для всех элементов схемы; метод последовательных приближений: по аналитическим выражениям или диаграммам оценивается расход пара на турбину и определяется точно по расхождению → задаются снова.

Методы расчета (упрощенные для инженерных расчетов) 1. С использованием коэффициента ценности теплоты.

Выбор схемы главных трубопроводов, их диаметра и количества параллельных линий, расстановка на них запорной и регулирующей арматур (паропроводы от ПК до турбины, паропроводы регенеративных отборов от турбины до регенеративных подогревателей и до внешних потребителей, трубопровод питательной воды от деаэратора до питательного насоса и ПК);

Секционная схема с переключательной магистралью.

Холодный резерв - агрегаты на станции, которые не выдают полезной нагрузки в сеть, но находятся в прогретом состоянии (через турбину идет пар).

Горячий (вращающийся) резерв - недозагрузка агрегатов, т.е. есть возможность поднять мощность полной загрузкой.

2. Выбор цикла и начальных параметров

3. Выбор типа, количества, единичной мощности турбоагрегатов или блоков

Выбор основного оборудования определяется тепловой схемой станции – блочный вариант или с поперечными связями.

Для блочных КЭС выбор основного оборудования сводится к выбору стандартных энергоблоков.

Единичная мощность вводимых энергоблоков не должна превышать аварийную мощность системы.

=10%

ТЭС строятся очередями, причём мощность блока на каждой очереди одинакова.

Для не блочных ТЭС выбор котлов и турбин производится отдельно. При этом каждая турбина снабжается паром из одного или двух паровых котлов. установка одного парового котла в секции экономичнее, однако может потребовать для обеспечения надёжного теплоснабжения применения резервных паровых котлов низкого давления.

Целесообразна установка на данной ТЭЦ одинаковых паровых котлов. Отсюда следует, что на ТЭЦ с секционной или блочной схемой расход пара на разные теплофикационные турбины должен быть одинаковый. Таким образом, теплофикационные турбины данных параметров пара нужно унифицировать по расходу пара на них.

4. Разработка и составление принципиальной тепловой схемы

Принципиальная тепловая схема отражает:

все этапы преобразования энергии, выделившейся при сжигании топлива, в тепловую и электроэнергию.

показывает взаимную связь основных элементов станции;

отражает все основное и вспомогательное оборудование (от котла до турбины), а также оборудование для отпуска тепла внешним потребителям.

На схеме отмечаются параметры, расходы и направления потоков теплоносителей в основных узлах и элементах схемы.

При разработке принципиальной тепловой схемы решаются следующие задачи:

регенеративный подогрев питательной воды до оптимальной температуры на основании технико-экономических расчетов;

удаление газов из потоков питательной, сетевой, добавочной воды;

восполнение потерь теплоносителей в основном цикле паротурбинной установки и вспомогательных устройствах;

выбор вида параметров и оптимальной схемы отпуска тепла внешним потребителям;

рациональное использование внешних потоков пара и дренажей в тепловой станции;

рациональное использование вторичных энергоресурсов промышленного предприятия в тепловой схеме станции.

5. Расчет принципиальной тепловой схемы

Задача расчета - в определении расходов, параметров и направлений рабочего тела во всех аппаратах тепловой схемы; в определении показателей тепловой экономичности и расхода пара на турбину.

Газовые турбины известны давно, но они лишь недавно стали активно использоваться в энергетике. Именно газовые турбины могут стать основой развития энергетического комплекса равнинных территорий и территорий, богатых природными ископаемыми, такими как нефть и газ. Применение газовых турбин реально даже при очень небольших объемах строительных работ. Они во много раз легче паровых турбин и занимают намного меньше места, поскольку в них нет крупногабаритного и тяжелого парового хозяйства (котлы, насосы и др.). При этом управление ими гораздо легче автоматизируется, т.е. такие станции требуют меньше обслуживающего персонала и т.п. Экономическая эффективность газовых турбин сегодня может быть весьма высокой. Так, если на выходе газовой турбины в теплообменнике выходящими газами греть воду и паром охлаждать горячий тракт турбины вместо воздуха (который очень дорог в обычном цикле), то при температуре газа 1500 °С, достижение которой ставится сейчас как задача, можно говорить об уровне КПД реального газотурбинного цикла порядка 60-62 %. А это в полтора раза выше, чем в предельном паротурбинном цикле. Также актуальность внедрения газотурбинных установок, потребляющих в качестве основного топлива попутный нефтяной газ, можно рассматривать с точки зрения охраны природы и эффективного использования попутно получаемого сырья. Можно привести наиболее характерные примеры уже созданных и эксплуатирующихся газотурбинных установок (ГТУ). Газотурбинная ТЭЦ мощностью 25 МВт вполне конкурентоспособная с мировыми по экономическим показателям (КПД 37 %) на базе двигателя НК-37СТ Самарского НПО им. Н.Д. Кузнецова сейчас запущена в работу в Самаре. В Перми начаты серийный выпуск и поставка 4-мегаваттной установки. Созданы ГТУ-ТЭЦ в 1,25 МВт в Санкт-Петербурге, 2,5 МВт - в Рыбинске, 10 МВт - в Уфе. Уже реализована станция в 20 МВт, созданная московской фирмой "Энергоавиа". Также необходимо особо отметить ГТЭС-72 Ватьеганского месторождения, введением в строй которой сегодня занимается ООО "Лукойл".

Газотурбинные тепловые электростанции (ГТЭС) оснащаются газотурбинными установками (ГТУ), работающими на газообразном или, в крайнем случае, жидком (дизельном) топливе. Поскольку температура газов за ГТУ достаточно высока, то их можно использовать для отпуска тепловой энергии внешнему потребителю. Такие электростанции называют ГТУ-ТЭЦ. В настоящее время в России функционирует одна ГТЭС (ГРЭС-3 им. Классона, г. Электрогорск Московской обл.) мощностью 600 МВт и одна ГТУ-ТЭЦ (в г. Электросталь Московской обл.).[1]
Природоохранные технологии на АЭС