Emporio Armani мужские    часы

Фотокамеры Nikon

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Свойства ядер Масса атома Магнитный момент ядра Изотопический спин Квантовая статистика Капельная модель Оболочечная модель


Критическую массу урана можно во много раз уменьшить, если использовать так называемые замедлители нейтронов. Дело в том, что нейтроны, рождающиеся при распаде ядер урана, имеют слишком большие скорости, а вероятность захвата медленных нейтронов ядрами урана-235 в сотни раз больше, чем быстрых

Радиоактивные семейства Радиоактивные превращения ядер

Все естественные радиоактивные нуклиды с А > 209 можно расположить в виде трех последовательных цепочек, называемых радиоактивными семействами или рядами. Каждое радиоактивное семейство начинается с a-радиоактивного нуклида, называемым родоначальником семейства, а каждый радиоактивный последующий элемент семейства является продуктом распада предыдущего.

Переход от одного элемента к другому в пределах семейства может быть описан изменением массового числа в виде формулы, называемой правилом смещения:

А = 4п + С ,

3.1.1

где С - постоянная для данного семейства величина, а n- либо уменьшается на единицу (при a-распаде), либо не изменяется (при b-распаде). На рис. 3.1.1 показано семейство урана. Стрелки на диаграмме (A, Z), направленные влево и вниз обозначают a-распады,

 

 


направленные вверх - b-распады. Возле каждой из жирных стрелок, обозначающих основную цепочку распада, приведены соответствующие периоды полураспада. Начинается это семейство с , который с периодом полураспада T1/2 = 4,5×109 лет путем a-распада превращается в (торий), который, в свою очередь, путем b--распада с Т1/2 = 24 дня превращается в  (протактиний). Протактиний, в свою очередь, с Т1/2 = 1,2 минуты превращается в . Следует обратить внимание на огромное различие в периодах полураспада в первом и втором звеньях ряда. Это различие типично и для остальных радиоактивных семейств. Некоторые нуклиды, входящие в семейства, могут с разной вероятностью испытывать как a-, так и b-распады. На схеме рис. 3.1.1 они образуют т.н. вилки. Семейство урана заканчивается стабильным нуклидом свинца , ядро которого является магическим по числу протонов. Остальные семейства имеют аналогичные характеристики, которые представлены в таблице 3.1.1. Во второй строке этой таблицы даны характеристики не существующего в природе семейства. Родоначальником этого семейства является искусственно получаемый в ядерных реакторах или в ядерных взрывах трансурановый элемент плутоний , но название это семейство получило по имени первого долгоживущего нуклида (период полураспада 2,2·106лет). Название актиноуранового семейства произошло от старого, уже вышедшего из употребления, наименования нуклида 235U.

 

 

Подпись: Таблица 3.1.1
Название семейства	Первый элемент	Последний элемент	nmax	nmin	C
Тория	 
 
58	52	0
Нептуния	 
 
59	52	1
Урана	 
 
59	51	2
Актиноурана	 
 
58	51	3


Последними элементами всех четырех радиоактивных семейств являются стабильные магические (следовательно, особо устойчивые) нуклиды свинца и висмута.

Естественные более легкие радиоактивные ядра, чем нуклиды радиоактивных семейств, которые не успели распасться с момента образования и до настоящего времени, непрерывно образуются под действием космического излучения. Например, под действием космического излучения атмосферный азот 14N превращается в b-активный углерод 14C с периодом полураспада 5730 лет. Измерение содержания этого нуклида в древних органических останках (скелетах, мумиях, деревянных предметах и т.п.) позволяет археологам определять возраст этих предметов.

В 1939 году немецкими учеными О. Ганом и Ф. Штрассманом было открыто деление ядер урана. Продолжая исследования, начатые Ферми, они установили, что при бомбардировке урана нейтронами возникают элементы средней части периодической системы – радиоактивные изотопы бария (Z = 56), криптона (Z = 36) и др.
Электротехника расчеты Физика ядра Ядерное оружие Cвойства атомных ядер